Ведомость рабочих чертежей основного комплекта марки КМ

Лист	Наименование	Примечание
1	Общие данные. Ведомость чертежей комплекта КМ.	
2	Схема расп-я подстропильных балок на отм. +3.010, +4.550, +5.050 и балок покрытия	
3	Схема расп-я подстропильных балок на отм. +5.690, +6.270, +7.930 и балок покрытия	₹.
4	Разрезы 1-1/3-3.	
5	Разрезы 4-4,5-5. Узел 1.	
6	Узлы 2-5.	
7	Узлы 6-8. Ведомость элементов.	
8	Техническая спецификация металла.	

1. Исходные данные

- 1.1.Чертежи данного комплекта выпущены на основании следующих документов:
- -технического задания;
- 1.2. Сооружение относится ко II классу ответственности зданий и сооружений, при расчете конструкции учтен коэффициент надежности по ответственности K=0,95.
- 1.3. Нагрузки:
- а) снег-расчетная снеговая нагрузка -180 кгс/м (III район по СНиП 2.01.07-85)
- δ) нормативный ветровой напор-30 кгс/м (II район по CHun 2.01.07-85)
- в) расчетная зимняя температура воздуха (средняя температура наиболее холодной пятидневки) составляет минус 26 °C.
- 1.4. Металлоконструкции запроектированы в соответствии с:
- СНиП II—23—81*"Стальные конструкции. Нормы проектирования."
- СНиП 2.01.07-85* "Нагрузки и воздействия".
- СНиП 3.03.01-87* "Несущие и ограждающие конструкции"
- Серия 2. 440-2 /88 "Узлы стальных конструкций производственных зданий промышленных предприятий" выпуск 1. Серия 1.460.3-22 "Стальные конструкции покрытий неотапливаемых зданий" выпуск 1.
- 1.5. На схемах элементы конструкций обозначены марками. Маркировка стальных конструкций произведена без учета конструктивных особенностей: длин, примыканий, и т.д.
- 1.6. В настоящем проекте разработаны только принципиальные решения соединений конструкций в узлах. Размеры сварных швов, количество и диаметр болтов определяются (или проверяются) при разработке чертежей КМД по расчетным усилиям, иказанным в ведомостях элементов на схемах констрикций.

Катеты всех швов принимать по минимальным толщинам свариваемых элементов.

1.7. Указания о принятых марках стали приведены в технической спецификации стали и в ведомостях элементов на схемах конструкций.

2. Материал конструкций

- 2.1. Материал металлоконструкций сталь С245 по ГОСТ 380-94.
- 2.2. Материалы для сварки следует применять в соответствии с указаниями, приведенными в главе СНиП II-23-81* табл.55*.
- 2.3. Все заводские соединения- сварные по табл. 3 ГОСТ 1759.4-87

Закрепление гаек на постоянных болтах осуществлять постановкой контргаек или пружинных шайб

Болты следует принимать класса точности В по ГОСТ 7798-70*, класса прочности 5,8 по таблице 3 ГОСТ 1759.4-87.

Гайки принимать по ГОСТ 5915-70*, класса прочности 5.

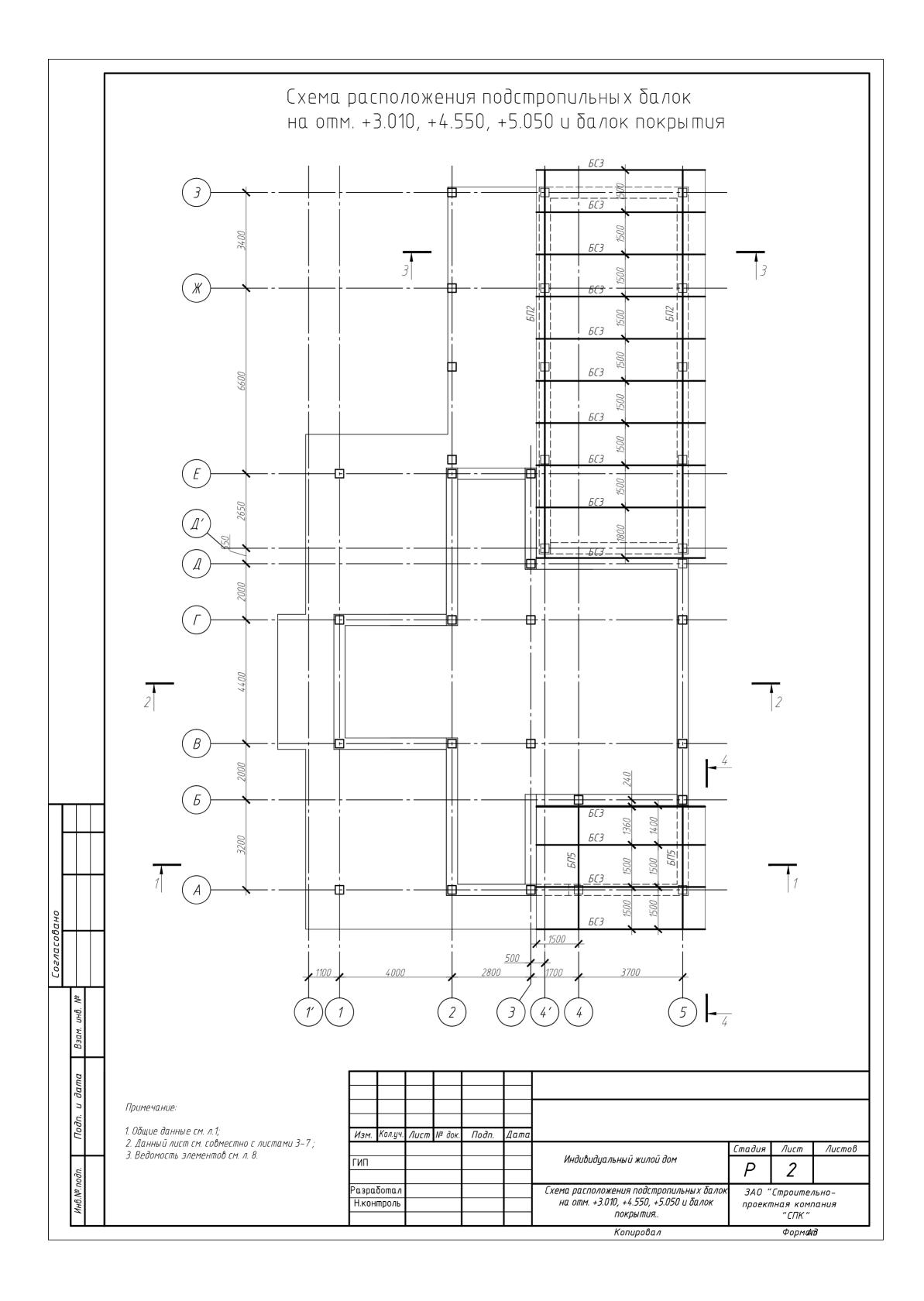
Шаūбы принимать по ГОСТ6402-70*-пружинные и по ГОСТ11371-78*-круглые.

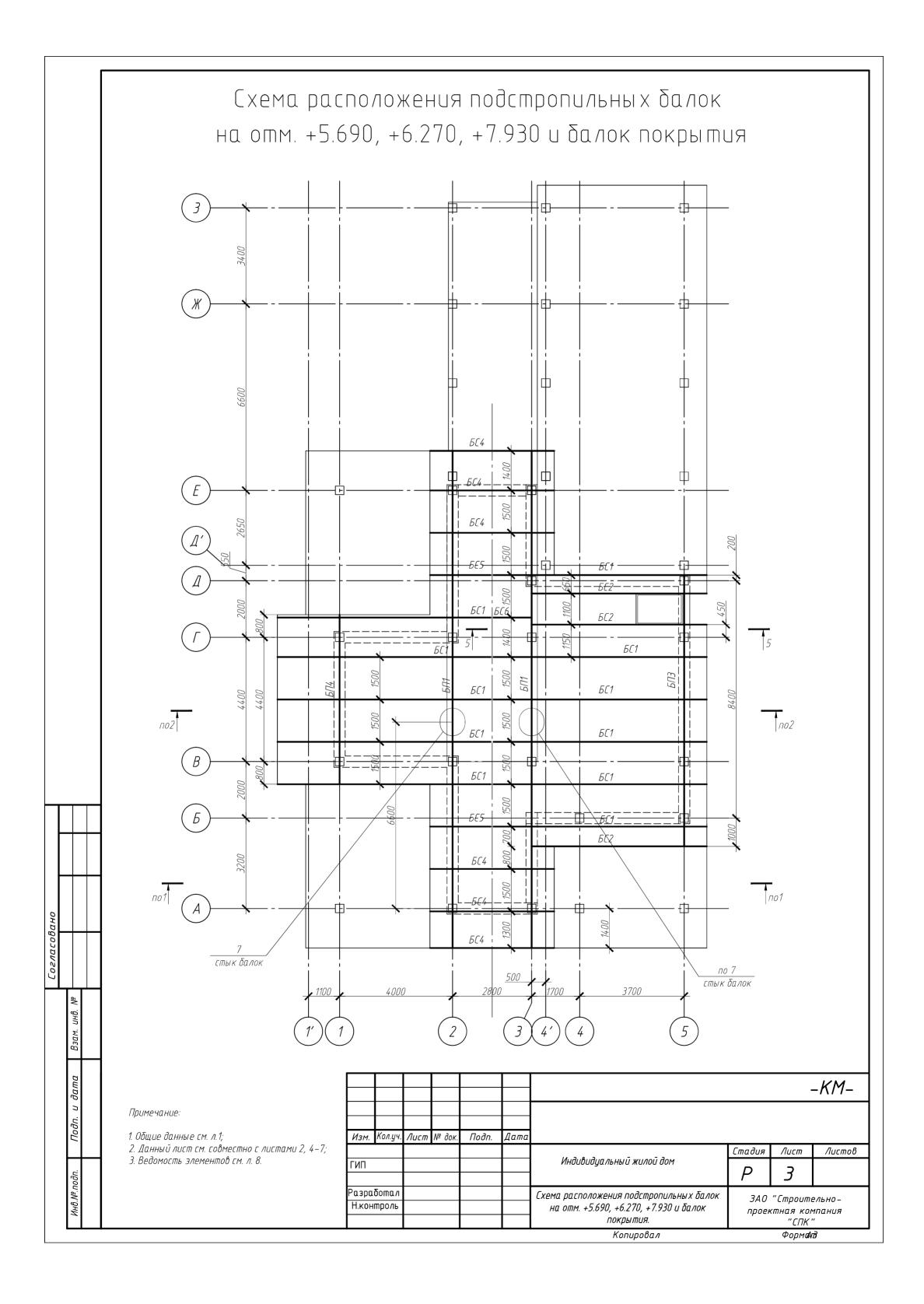
3. Указания по изготовлению и монтажу конструкций

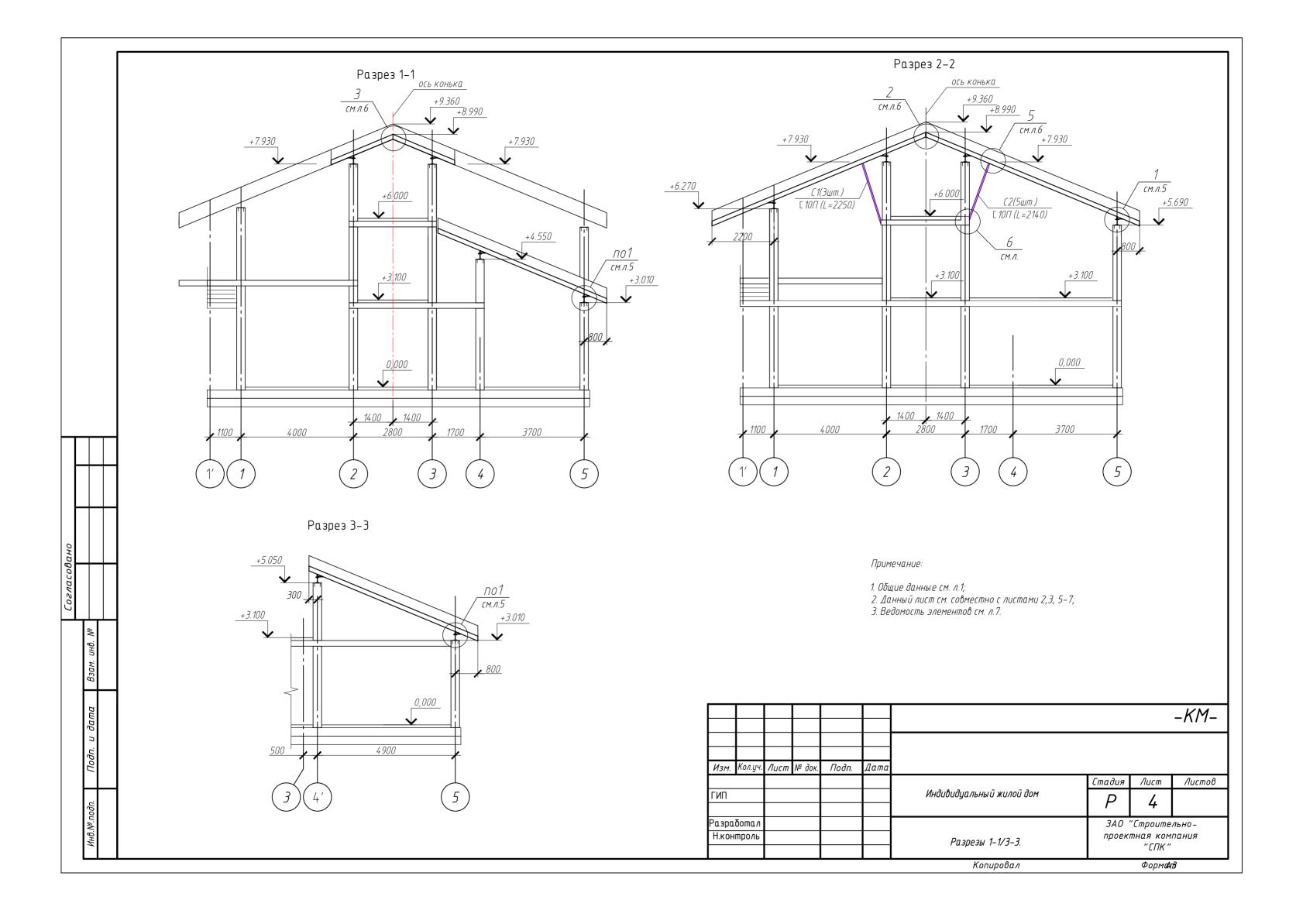
- 3.1. Изготовление и монтаж вести согласно требованиям:
- СНиП 3.03.01-87 "Несущие и ограждающие конструкции";
- CHuП 12-03-2001 "Техника безопасности в строительстве";
- CHuП 12-04-2002 "Безопасность труда в строительстве. Часть 2. Строительное производство";
- СНиП 3.04.03-85 "Защита строительных констрикций и соорижений от коррозии":
- CHuП III-18-75 "Металлические конструкции. Правила производства и приемки работ";
- СП 53-101-98 "Изготовление и контроль качества стальных строительных констрикций":
- . СП ЭЭ- 10 1-90 ИЗСОШООЛЕНОЕ О КОНШРОЛЬ КИЧЕСШОЙ СШИЛЬНЫХ СШРООШЕЛЬНЫХ КОНСШРУКЦОЙ
- ГОСТ 23118-99 "Конструкции стальные строительные. Общие технические условия".
 3.2. Крепление элементов производить на опорные усилия, указанные в ведомостях элементов конструкций. Неоговоренное минимальное осевое усилие для расчета креплений сжато-растянутых элементов 5,0 тс,
- 3.3. Заводские сварные соединения элементов стальных конструкций, разработанных в данном проекте, следует выполнять полиавтоматической сваркой.

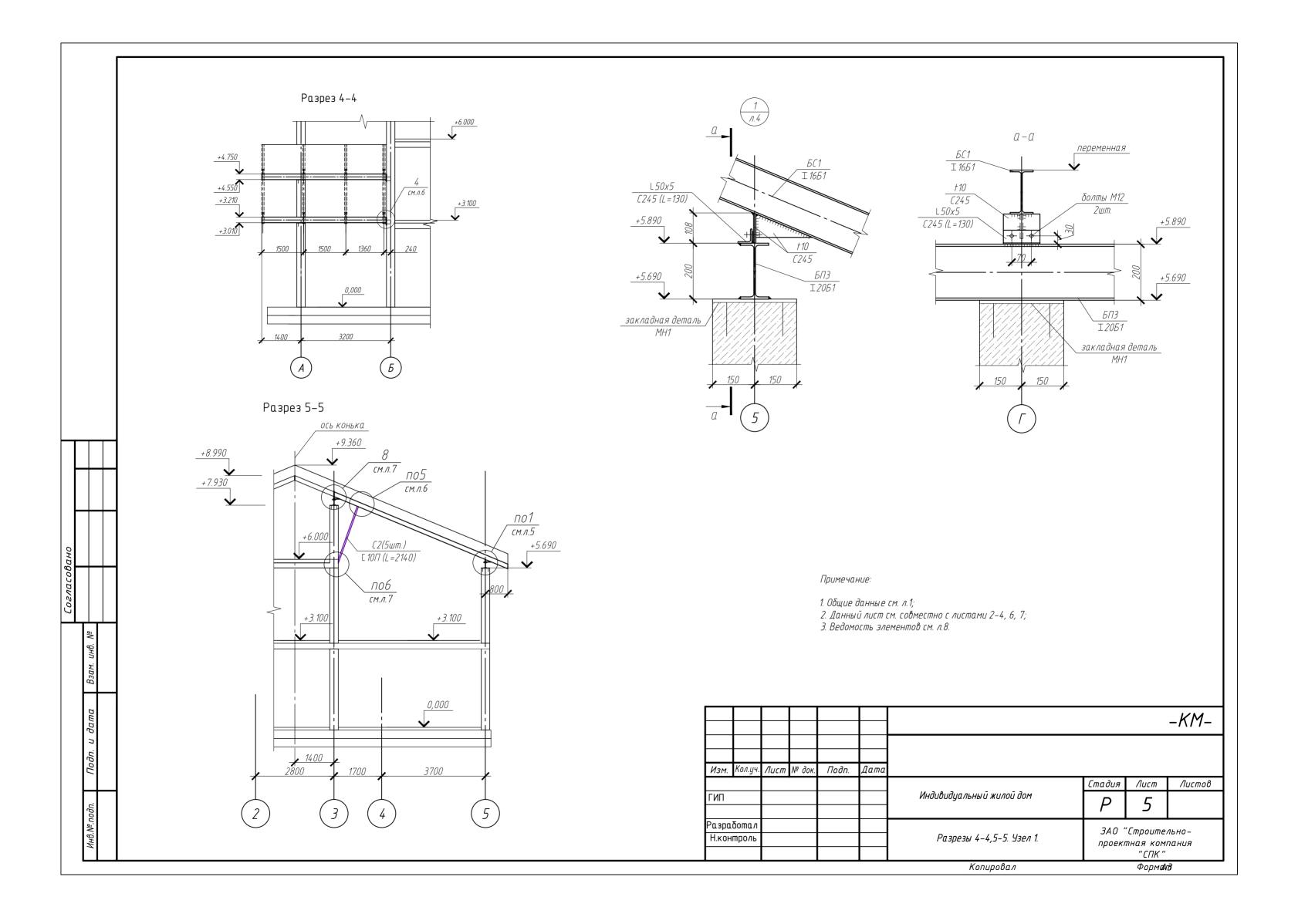
Для сварных соединений на монтаже применяется ричная сварка.

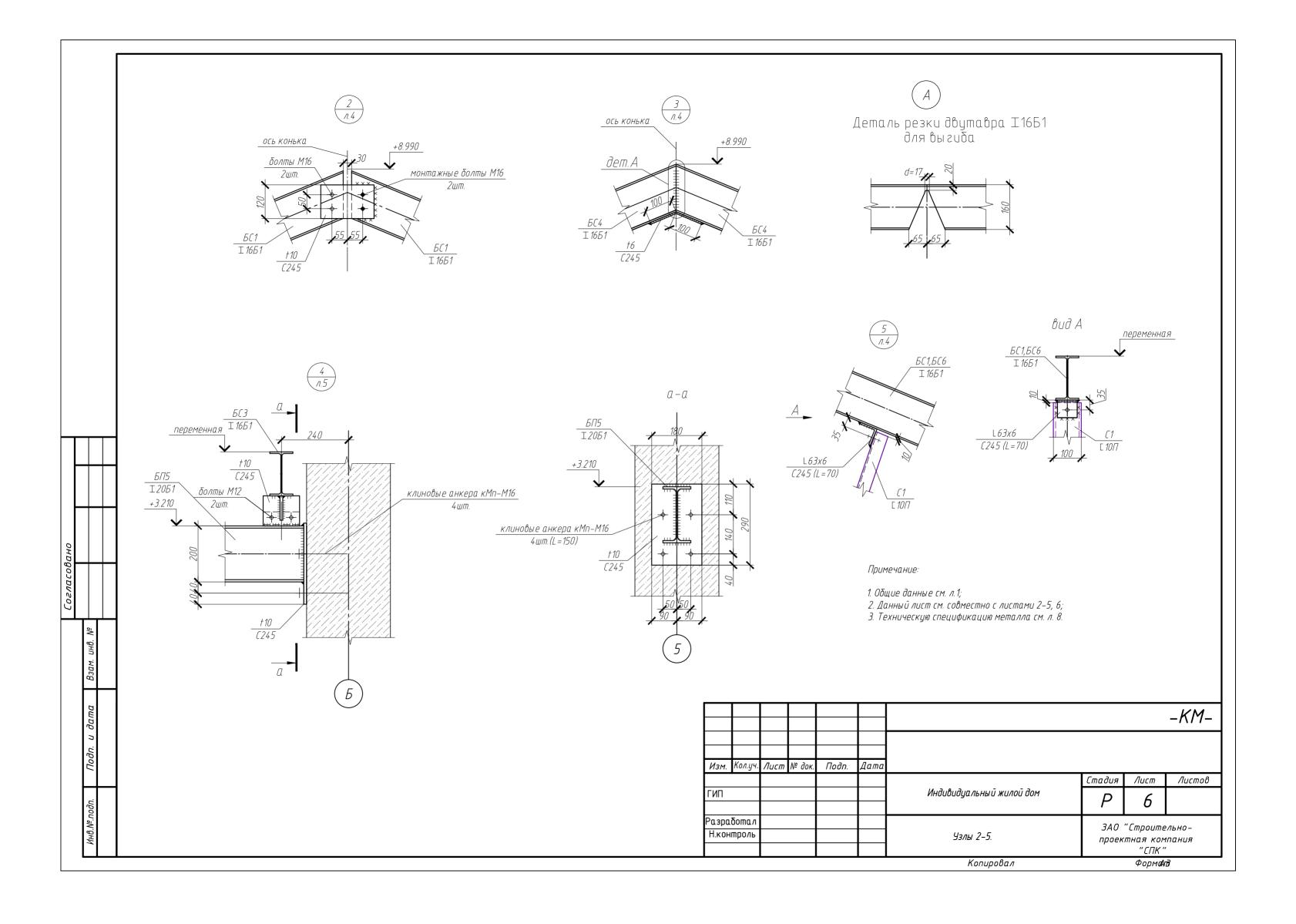
неоговоренная наименьшая опорная реакция для крепления балок – 2,0 mc.

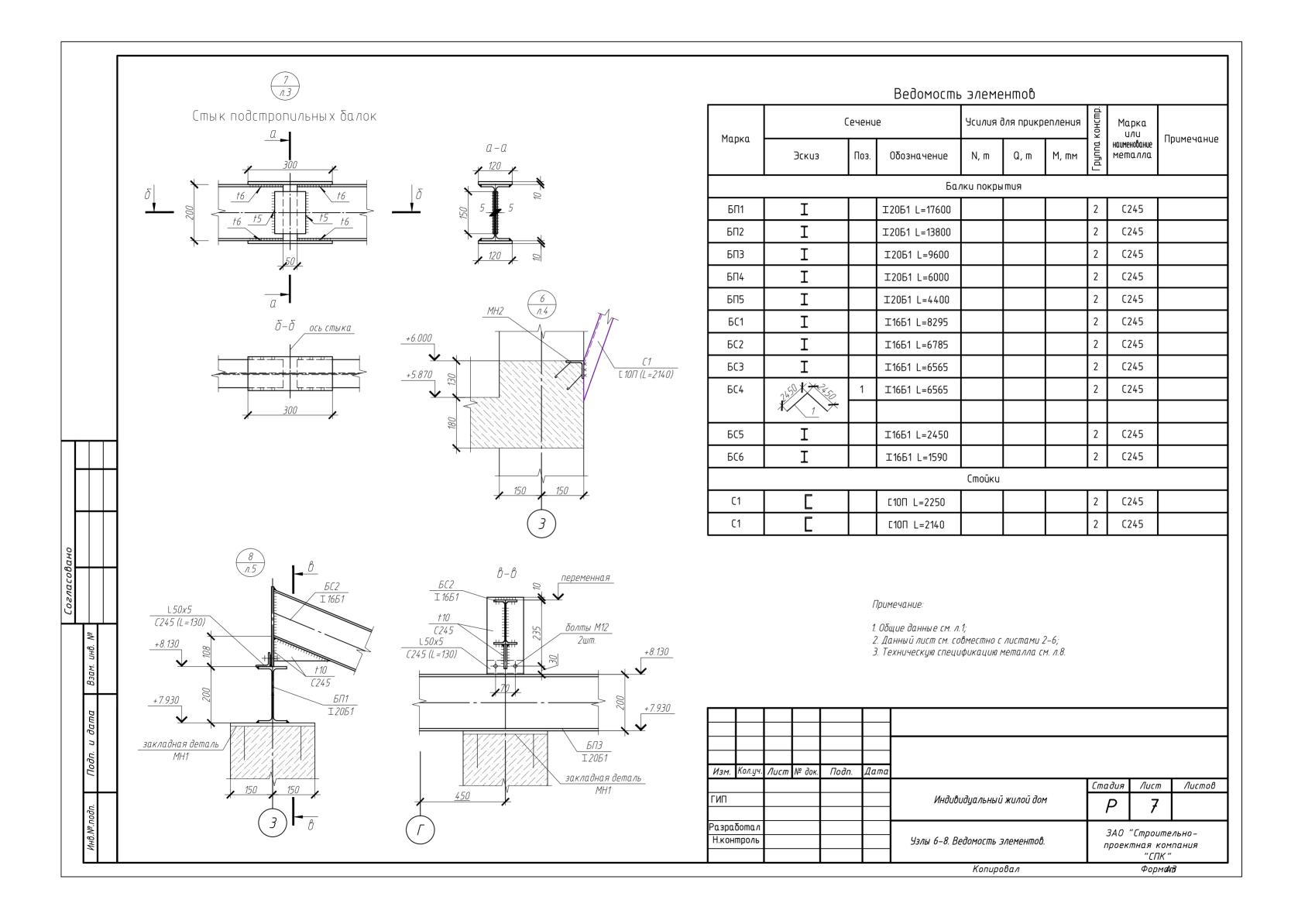

При ручной дуговой сварке деталей из углеродистой стали применять электроды типа 3 42 по ГОСТ 9467-75.


- 3.4. После проверки соответствия положения смонтированных металлоконструкций проектному, произвести принятие их по акту.
- 3.5. Допуски линейных размеров конструкций покрытия соответствует третьему классу точности по ГОСТ 21779–82.


4. Антикоррозийная защита.


- 4.1. Антикоррозийную защиту стальных конструкций осуществлять в соответствии с требованиями СНиП 2.03. 11–85* "Защита строительных конструкций от коррозии". Поверхности металлоконструкций окрасить эмалью ПФ 1189 в два слоя. Общая толщина защитного покрытия 50–60 мкм.
- 4.2. Защиту монтажных соединений (сварных и болтовых) выполнять тремя слоями той же эмали по слою грунтовки. Нарушенное при монтаже и транспортировке покрытие восстановить.
- 4.3. Перед нанесением защитных покрытий поверхности конструкций необходимо очистить до степени 3
- в соответствии с требованиями СНиП 2.03.11-85* и ГОСТ 9.402-80*.


									-KM-
Изм.	Кол.уч.	Лист	№ док.	Подп.	Дата				
			•				Стадия	Лист	Λυςποβ
ГИП						Индивидуальный жилой дом	P	1	8
	ншроль 1 дошал					Общие данные. Ведомость чертежей комплекта КМ.		"Строите тная ком "СПК"	пания
					-	Копировал		ФормаА	rB



Вид профиля, ГОСТ, ТУ Двутавр нормальный (Б) по СТО АСЧМ 20-93 Швеллер с параллельными гранями полок по	Марка металла, ГОСТ С 245	Обозначение профиля I 20Б1 I 16Б1 Всего профиля:	N, n/n 1 2	Балки 1,83 3,11	гементам конструкций Стойки	Οδщαя масса, п 1,83 3,11
нормальный (Б) по СТО АСЧМ 20–93 Швеллер с параллельными	C 245	I 16Б1 Всего профиля:	2	3,11		
СТО АСЧМ 20-93 Швеллер с параллельными		Всего профиля:				3,11
Швеллер с параллельными				L 9L		
параллельными	6.015			4 94		
параллельными	6.015	¹ [10∏		1,21		4,94
· ·	6 01 5		3		0,162	0,162
ΓΟCT 8240-97	C 245					
		Всего профиля:	4		0,162	0,162
Беолик	[L 63x6	5		0,004	0,004
раднополочный по ГОСТ 8509-93	C 245	∟ 50x5	6	0,044		0,044
		Всего профиля:	7	0.044	0.004	0,048
Сталь листовая,		— †10	8	0,183	1	0,183
горячекатанная по	1 711	— f16	9	0,003		0.003
ΓΟΣΤ 27772-88	L 243	- J5	10	0,003		0,003
		Всего профиля:	11	0,189		0,189
Итого масса металл	α:		12	5,173	0,166	5,339
Масса наплавленного	металла:		13			
I						
Изм. Кол.уч. Лист №	² док. Подп	л. Дата			Стадия Лист	Листов
Изм. Кол.уч. Лист М ГИП	9 док. Подп		ндивидуаль	ьный жилой дом	Стадия Лист	Листов
	равнополочный по ГОСТ 8509-93 Сталь листовая, горячекатанная по I ГОСТ 27772-88 Итого масса металля	равнополочный по ГОСТ 8509-93 Сталь листовая, горячекатанная по ГОСТ 27772-88 Итого масса металла: Масса наплавленного металла:	Беолик L 63x6 рабнополочный по L 50x5 ГОСТ 8509-93 Всего профиля: Сталь листовая, горячекатанная по ГОСТ 27772-88 — †10 Всего профиля: — 516 Всего профиля: Итого масса металла:	Беслик L 63x6 5 раднополочный по ГОСТ 8509-93 C 245 L 50x5 6 Всего профиля: 7 Сталь листовая, горячекатанная по ГОСТ 27772-88 — †10 8 ГОСТ 277772-88 — 15 10 Всего профиля: 11 Итого масса металла: 12 Масса наплавленного металла: 13	Беолик L 63x6 5 раднополочный по ГОСТ 8509-93 C 245 L 50x5 6 0,044 Всего профиля: 7 0,044 Сталь листовая, горячекатанная по ГОСТ 27772-88 — †10 8 0,183 - †16 9 0,003 - 15 10 0,303 Всего профиля: 11 0,189 Итого масса металла: 12 5,173 Масса наплавленного металла: 13	1